| Abdullah Al Mahmud | docs.statmania.info |
Can uniquely characterize a distribution
Central Moments: \(\mu_r=\frac{\sum(x_i-\bar x)^r}{n}\)
\(\mu_r'=\frac{\sum(x_i-a)^r}{n}\); a is arbitrary number
\(\mu_1'=\frac{\sum(x_i-a)}{n}=\frac{\sum x_i}{n}-\frac{na}{n}=\bar x-a\)
\(\displaystyle \mu_1=\frac{\sum (x_i-\bar x)}{n}=\frac{\sum x_i}{n}=\bar x - \bar x = 0\)
Coefficients using the triangle
From \(\mu_r'(a)\) to \(\mu_r'(k)\)
Assume, \(a^r = \mu_r'(a)\), \(b = a - k\)
Binomial Formulae
Use \(k = \bar x\)
That’s it! DO NOT MEMORIZE!
\(\mu_2=\mu_2' - \mu_1'^2\)
\(\displaystyle \mu_r = \frac{\sum(x_i-\bar x)^r )}{n}; r=1,2,3, \cdots\)
Lack of symmetry
Most students score low, very few get good scores.
Very few students get low marks, most get high marks.
Normal distribution \(\rightarrow\)
Kurtosis is NOT a degree of peakedness. Learn more
Pearson’s Coefficient: \(SK_P=\frac{Mean-Mode}{\sigma}=\frac{3(Mean-Median)}{\sigma} ;(-3,3)\)
(\(Mode=3Me-2\bar X\))
Estimate Skewness
4, 23, 55, 70, 74, 78, 86, 89
Coefficient of skewness, \(\gamma_1 = \sqrt{\beta_1} = \sqrt{\frac{\mu_3^2}{\mu_2^3}} = \frac{\mu_3}{\sqrt{\mu_2^3}}\)
If \(\gamma_1 < 0 \rightarrow\) Negative Skew
If \(\gamma_1 > 0 \rightarrow\) Positive Skew
If \(\gamma_1 = 0 \rightarrow\) No Skew (Symmetric Distribution)
\(\gamma_2=\beta_2-3\)
\(\gamma_2=0 \space or \space \beta_2=3) \rightarrow\) Mesokurtik \(\gamma_2\gt0 \space or \space \beta_2 \gt 3) \rightarrow\) Leptokurtik \(\gamma_2\lt0 \space or \space \beta_2\lt3) \rightarrow\) Platykurtik
9, 7, 8, 6 \(\rightarrow\) Find kurtosis
2, 1, 0, 5, -6, 7, -4
Solution
Minimum | \(Q_1\) | \(Q_2\) | \(Q_3\) | Maximum |
---|---|---|---|---|
-6 | -4 | 1 | 5 | 7 |
\(\bar X = 400, CV = 8\%\), and \(SK_P = 0.40\).
Find Mode and Median.
Year: 1946
Maj Hadlam (British Army)
Sample: 13634 Female individuals
Mean duration: 280 days