Set A

Subject Code: $1 \quad 3 \quad 0$

SYLHET CADET COLLEGE PRETEST EXAMINATION - 2024 CLASS: XII STATISTICS (CREATIVE) SECOND PAPER TIME – 2 hours & 35 minutes FULL MARKS – 50

[**N.B.** – The figures of the right margin indicate full marks. Read the stems carefully and answer the associated questions. Answer any **FIVE** questions taking at least two questions from each group]

Group - A

1. A jar contains 5 red marbles and 7 yellow marbles. Three marbles are drawn at random.

	(a) What is a simple event?	1
	(b) In how many different ways can 5 books be arranged on a shelf?	2
	(c) What is the probability that all marbles are yellow?	3
	(d) What is the probability that a marble has a different color?	4
2.	. $P(M N) = \frac{2}{9}, P(M \cup N) = \frac{5}{7}, P(N) = \frac{4}{7}$	
	(a) What is a certain event?	1
	(b) Briefly explain empirical probability with an example.	2
	(c) Calculate $P(M \cap \overline{N})$.	3
	(d) Examine whether	4
	i. $P(M N) = P(N M)$	
	ii. $P(M \cap N) = P(M \cap N)$	

3. The joint probability function of two random variables X and Y is described by:

$$P(X,Y) = \frac{2x+y+1}{52}; \quad x = 1,2; \quad y = 1,2,3,4$$

(a)	Give an example of a continuous random variable	1
(b)	What are the required properties of a probability distribution?	2
(c)	Find the marginal distribution $P(X)$.	3
(d)	Compute $P(Y X)$ for $X = 2$.	4

4. The probability distributions of daily sales of two popular coffee brands, Brand A (X) and Brand B (Y), are:

Sales (cups)	50	100	150	200	250
P(X)	0.05	0.3	р	0.25	0.1
P(Y)	0.1	0.35	0.3	0.2	0.05

(a) How can you expand $E(x+y)$?	1
(b) Determine the formula of variance in terms of expectation.	2
(c) Find p from the table.	3
(d) Which brand has a more consistent daily sales distribution? Justify your answer.	4

Group - B

5. A company produces smartphones, and it is known that 5% of the smartphones have a manufacturing defect on average. The company ships 15 smartphones in each box, and a retailer purchases 500 boxes.

(a) How many parameters does the Binomial distribution have?	1
(b) Can $V(X)$ be equal to $E(X)$ in binomial distribution? Examine.	2
(c) What is the probability that the number of defective smartphones in a box is at least	1? 3
(d) How many boxes are expected to contain exactly 2 defective smartphones?	4

6. A random variable is distributed as follows:

Value	0	1	2	3	4	5
Frequency	60	80	50	20	6	2

(a)	What is the mean of a Poisson distribution with parameter λ ?	1
(b)	If a Poisson distribution is $P(x) = \frac{e^{-m}m^x}{x!}$, $P(x+1) = ?$ Derive in terms of $P(x)$.	2
(c)	Find the mean and standard deviation of the given distribution.	3
(d)	Compare the observed and expected frequencies, assuming a Poisson.	4

7. The number of cars passing through a toll booth follows a Poisson distribution with a mean of 5 cars per minute.

(a) What is a Poisson process?

(a) What is a Poisson process? 1
(b) Prove
$$\sum_{i=1}^{\infty} P(x) = \sum_{i=1}^{\infty} \frac{e^{-m}m^x}{x!} = 1$$
 2

3

4

- (c) Determine the probability that exactly 3 cars pass through the toll booth in a minute.
- (d) If P(X = a) = P(X = b), find the value of a and b. What pattern do you observe?

8. Population of New York, Los Angeles, and Chicago by different age groups and areas are given below:

City	Age			Area (sq. km)
	0-14	15-64	65+	
New York	1,200,000	5,000,000	700,000	789
Los Angeles	1,000,000	4,500,000	500,000	1,302
Chicago	900,000	3,800,000	600,000	606

(a) What is the formula of crude birth rate? 1 (b) Two dependency ratios are $d_1 = 98\%$ and $d_2 = 104\%$. In which case are there more dependent people per 1000 individuals? (c) Find and compare the dependency ratios of New York and Chicago. 3 (d) Based on the data, which city is more comfortable for living? Justify your choice. 4